
Bayesian Hierarchical Modeling

A conceptual introduction 



 

“P(A|B) = P(B|A) / P(B) * P(A)”



 

“when you have eliminated the impossible, whatever 
remains, however improbable, must be the truth”



Let’s start with a simple problem: 
You have a coin, and you’re considering two hypotheses equally. Either:

● The coin is fair. p(H) = 0.5
● Or the coin will always land tails. p(H) = 0.0

We’ll flip the coin once, observe the outcome, and evaluate the hypotheses. 
Here’s the table of all the equiprobable possibilities under consideration: 
(rows 2 and 3 are duplicates of each other, because they must be equiprobable to rows 0 and 1)

You flip the coin and it lands heads (H). Which hypothesis is correct?



3. Eliminate the 
impossible.

Obviously p(H) must have been 0.5. But let’s make this procedure super explicit:

Let’s start with a simple problem: 

1. Consider the 
hypotheses. 2. Generate 

possible outcomes.

4. Whatever remains 
must be the truth!



Note that this procedure is generalizable, and it completely obey’s Bayes’ rule.

As a test, try the problem again, except this time say the result turns out to be tails (T). What conclusions 
can we draw? What is the probability that p(H) = 0.5?

Let’s start with a simple problem: 

3. Eliminate the 
impossible.

1. Consider the 
hypotheses. 2. Generate 

possible outcomes.

4. Whatever remains 
must be the truth!

The posterior, or the “truth”, can be read straight off from the 
remaining table. The probability of a “fair coin” is 1/3, and 
this can be double checked through Bayes’ rule.



You have an ad button, whose clickthrough rate you want to measure. Your initial assumption is that the 
CTR will be somewhere around 2 percent, so you model it as a Beta(2, 98) distribution.

We’ll then observe 100 impressions, see how many of those clicked the button (n_click), and draw 
conclusions about the actual CTR.

Say that 3 of the 100 impressions resulted in a click. Then...

Let’s try a “standard” CTR problem.



… then the number 
of clicks.

… here’s how the procedure works in this case: (recall: Beta(2,98) as the prior, 3/100 clicks as the result)

Let’s try a “standard” CTR problem.

3. Eliminate the 
impossible.

1. Consider the 
hypotheses.

2. Generate 
possible outcomes.
First, the CTR...

4. Whatever remains 
must be the truth!

sample from 
Beta(alpha, beta) sample from 

Binom(100, ctr)

You can draw as many samples as is practical, as long as 
they remain equiprobable. The more the better.



Once you have the final remaining “truth” table, you can again just read off the answers from it. For 
example, the “ctr” column in this table IS the posterior distribution of the CTR, subject only to having 
enough samples.

According to the usual conjugacy rules of Beta distributions, this should be Beta(2 + 3, 98 + 97) = 
Beta(5,195) - and indeed it is.

Let’s try a “standard” CTR problem.

4. Whatever remains 
must be the truth!

Blue histogram: from the ctr column
Red line: Beta(5, 195)



… wait, what?

Yes. Really. Anything with more than 2 columns in the final table can be considered a hierarchical model.

A hierarchical model is any model where the parameters and the data are generated in a stepwise 
fashion, so that one (or more) set of numbers is used to generate the next set of numbers.

You now understand hierarchical models!

Our procedure

alpha

beta

ctr n_click

Hierarchical model

Beta
(alpha, beta)

Binom
(100, ctr)



We’ll do this problem in exactly the same way as the previous problems.

We have an ad button, whose clickthrough rate we want to measure. We’re going to try out 3 different 
button colors - red, green, blue - to see which ones have the highest CTR.

Without multiple comparisons, we’d proceed by assuming that the prior is something like Beta(1,1), then 
adding in the observed clicks and impressions for each button color. 

But here, we’re going to assume that the prior will be of the form Beta(alpha, beta), and that this prior will 
serve as the prior for all three button types. 

We don’t know what alpha and beta are. To quantify our ignorance, we’ll assume that they could be any 
numbers drawn from the uninformative prior of (alpha + beta) ** -2.5.

The observed outcomes are as follows:
● Red: 8 clicks /20 impressions
● Green: 3 clicks /20 impressions
● Blue: 4 clicks /20 impressions

Hierarchical model for multiple comparisons



Here’s the hierarchical model:

Hierarchical model for multiple comparisons

alpha

beta

red ctr red n_click
Beta
(alpha, beta)

Binom
(20, red ctr)

(alpha + beta) ** -2.5

green ctr

blue ctr

Binom
(20, green ctr)

Binom
(20, blue ctr)

green n_click

blue n_click

Beta
(alpha, beta)

Beta
(alpha, beta)



And here’s our “eliminate the impossible, whatever remains must be true” procedure.

Hierarchical model for multiple comparisons

(alpha + beta) ** -2.5

Filter to “eliminate the 
impossible”, keeping only 
the rows that agree with 
observed outcomes:

Red: 8 clicks /20 
Green: 3 clicks /20 
Blue: 4 clicks /20 



Results. Recall that the raw data was as follows:
● Red: 8 clicks /20 impressions
● Green: 3 clicks /20 impressions
● Blue: 4 clicks /20 impressions

Hierarchical model for multiple comparisons: results

True rate pdfs, using pymc. Note that each pdf 
is shifted towards their common mean, more 
so than the raw data would suggest. For 
example, for red, 8/20 = 0.4, but the pdf is 
centered more around 0.35 or so.

True rate pdf 
histograms, from 
brute-force simulation 
with pandas. Fewer 
samples, but note the 
good agreement with 
the pymc result.



Miscellaneous notes and “gotchas” I fell into
I kept wanting the prior distribution for all 3 button colors to be a single Beta distribution. But it’s not. It’s a 
combination of any Beta(alpha, beta) distribution which manages to generate the observed outcomes.

Similarly, I kept wanting to apply Bayes’ rule at each stage in the hierarchy. That is, I wanted to “fit”, or 
“eliminate the impossible”, multiple times, once at each stage. But you don’t. You “fit” or “eliminate the 
impossible” only once, to cut away all the rows which do not correspond to the observed outcomes after 
all of the random numbers have been generated.

The reason for these misconceptions was that I wanted to keep the Beta-Beta conjugacy of our pdfs. But 
you can’t. You generally have to give up on any clean, closed-form solutions.

That’s why everything is simulated, and that’s why using hierarchical models takes a long time.

Suggested resources:

http://sl8r000.github.io/ab_testing_statistics/use_a_hierarchical_model/
https://pymc-devs.github.io/pymc/tutorial.html

http://sl8r000.github.io/ab_testing_statistics/use_a_hierarchical_model/


Conclusion: Holmes and Bayes, unified!



Questions? Comments? Suggestions?
Email me at naclhv at gmail dot com


